MTBE from Refinery C₄ Feeds Using CDMtbe® Technology

Overview
The CDMtbe catalytic distillation technology processes C₄ streams from refinery units to produce MTBE. The CDMtbe process is one of a family of process technologies developed and commercialized by Lummus Technology. More than 85 plants using CDMtbe technology have been licensed since 1981 with a total capacity exceeding 13,000,000 MTA of MTBE.

MTBE Synthesis
MTBE is formed by the catalytic etherification of isobutylene with methanol. The patented CDMtbe process is based on a two-step reactor design, consisting of a boiling point fixed bed reactor followed by final conversion in a catalytic distillation column. The process uses an acidic ion exchange resin catalyst in both its fixed bed reactor and proprietary catalytic distillation structures.

The boiling point reactor is designed so the liquid is allowed to reach its boiling point by absorbing the heat of reaction, after which a limited amount of vaporization takes place, thereby maintaining precise temperature control. The maximum temperature is adjusted by setting the total system pressure. Since the reacting liquid mixture temperature cannot exceed the boiling temperature, control is far superior to those systems in which heat must be transferred by convection or conduction. This design retains the heat of reaction as latent heat, reducing heat input requirements for the ensuing fractionation.

The unique catalytic distillation column combines reaction and fractionation in a single unit operation. It allows a high conversion of isobutylene (exceeding fixed bed equilibrium limitations) to be achieved simply and economically. By using distillation to separate the product from the reactants, the equilibrium limitation is exceeded and higher conversion of isobutylene is achieved. Catalytic distillation also takes advantage of the improved kinetics through increased temperature without penalizing equilibrium conversion.

MTBE synthesis is a highly selective process for removal of isobutylene. It can be used for pretreatment to produce high purity butene-1 or for recovery to make high purity isobutylene via MTBE decomposition.

CDMtbe Process Flow Diagram

![Diagram of the CDMtbe process flow](image)
Process Chemistry

Etherification

\[
\begin{align*}
\text{Isobutylene} \quad & \quad \text{Methanol} \\
\text{CH}_3\text{-C}=\text{CH}_2 \quad & \quad \text{CH}_3\text{OH} \quad & \quad \text{MTBE} \\
\end{align*}
\]

Typical Overall Material Balance

| Isobutylene conversion percent: 98+ |
| Feeds Kg/Hr |
| C₅s (Isobutylene 25 wt. %) | 47,300 |
| Methanol | 6,719 |

| Products |
| C₅ Raffinate | 35,234 |
| MTBE product | 18,785 |

MTBE Product Composition (excluding C₅s) |

| Wt. % |
C₅s	<0.1
Methanol	<0.1
Di-isobutylene	0.3
TBA	0.3
MTBE	99.2
Total	**100.0**

Advantages

'Boiling Point' reactor offers:

- Simple and effective control of reaction temperature
- Elimination of hot spots
- Long catalyst life
- High flexibility
- Low capital cost
- Elimination of catalyst attrition
- Most effective heat removal technique
- Elimination of cooling water requirement

Catalytic distillation offers:

- Improved kinetics
- High conversion 99%+ possible (beyond fixed bed equilibrium limit)
- Low capital cost
- Low utilities
- Commercially demonstrated long catalyst life with sustained high conversion
- Reduced plot area
- Simple reaction system and trouble-free operation
- Readily converted to bio ETBE if desired

mcdermott.com

Only employees, agents, or representatives authorized under and pursuant to written agreement with McDermott are authorized to distribute this brochure to an actual or potential client of McDermott. ©Copyright 2018 by McDermott International, Inc. All rights reserved.